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A simple method is described for identifying well-defined regions in a set of protein structures calculated 
from experimental interproton distance restraints. Two different functions, one based on the mean global 
rms difference, the other on the distance variation between equivalent atoms in different residues, are used 
to distinguish 'variable' from 'well-defined' regions. These functions are calculated in an iterative manner. 
The method is also capable of identifying several locally well-defined regions whose relative positions are 

not well-defined globally. 
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1. I N T R O D U C T I O N  

In recent years considerable progress has been 
made towards determining three-dimensional 
structures of  proteins in solution using NMR spec- 
troscopy [1-9]. This generally involves three 
stages: (i) the sequential assignment of  proton 
resonances by means of  two-dimensional NMR 
techniques identifying through-bond and through- 
space (<5 ./~) connectivities [10]; (ii) the assign- 
ment of  as many  cross-peaks as possible in the 
NOESY spectra in order to obtain a large set of  ap- 
proximate interproton distance restraints; and (iii) 
the determination of  a 3D-structure on the basis of  
these restraints using a suitable computer  
algorithm, for example metric matrix distance 

Correspondence address: M. Nilges or G.M. Clore, 
Max-Planck-Institut for Biochemie, D-8033 Martinsried 
bei Miinchen, FRG 

Abbreviations: NMR, nuclear magnetic resonance; 
NOE, nuclear Overhauser effect; NOESY, two- 
dimensional NOE spectroscopy; rms, root mean square 

geometry [11-14], restrained least squares 
minimization in torsion angle space with a variable 
target function [15] and restrained molecular 
dynamics [5,16-18]. In order to obtain a measure 
of  the region of  conformational  space over which 
the interproton distances can be satisfied, several 
structures are always calculated and the degree of  
convergence examined. In this way, incorrectly 
folded structures that fail to satisfy the experimen- 
tal restraints are easily identified. In many  cases, 
however, it is found that the experimental 
restraints, although sufficient to determine the ap- 
proximate overall polypeptide fold, may not be 
sufficient to determine the structure completely 
such that the lack of  experimental information 
produces a certain amount  of  variability in the 
structures. Thus, for example, some parts of  the 
structure may be better defined than others. Con- 
sidering the ill-defined regions, two cases can be 
distinguished. The ill-defined residues can be fully 
disordered. Alternatively, they can be locally well- 
defined but globally ill-defined such that the posi- 
tion of  a whole group of  residues varies f rom struc- 
ture to structure with respect to the remainder of  
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the protein. The recently determined structure of  
the protein hirudin [8] provides a typical example 
of  the latter case. Hirudin, a 63 residue protein, 
has a well defined core and two minor domains 
consisting of  a finger of  antiparallel fl-sheet 
(residues 31-36) and an exposed loop (residues 
47-55). The two minor domains are locally well 
determined (see fig. 1 of  [8]) but their relative posi- 
tions with respect to the central core could not be 
determined as no long range (i.e. l i - j l  >5)  inter- 
proton distance restraints between the two minor 
domains and the core could be identified. 

In this paper we present a simple method for 
delineating such 'fixed' and 'variable' regions in 
structures generated on the basis of  interproton 
distance data and for ascertaining whether the 
variable regions are locally well-defined or 
disordered. 

2. RESULTS AND DISCUSSION 

The simplest approach that one could use to 
identify fixed and variable regions is to display the 
set of  computed structures on an interactive 
graphics system. In practice, however, this simple 
approach may be extremely difficult. The reason 
for this is that in order to compare the structures 
it is necessary to best fit them first. The larger the 
size of  the variable regions, however, the worse 
will be the best fit of  the fixed regions. Moreover, 
it becomes increasingly more difficult and time 
consuming to distinguish visually fixed from 
variable regions as the number of  structures and 
the size of  the protein increases. 

An alternative approach involves making use of  
a function which is calculated from the structures 
themselves, and which has higher values for the 

variable regions than for the fixed ones. 
The mean of  the local atomic rms differences of  

sequential tripeptide segments between all pairs of  
structures [141 is one such function but is only able 
to detect very local variability. Thus, as shown in 
fig.la, it would not have been possible to identify 
the variable regions in hirudin on the basis of  this 
function. Indeed, the tip of  the finger of  an- 
tiparallel fl-sheet around residue 33 has the lowest 
value of  the mean local rms difference in the whole 
protein, and not even at the 'hinges' connecting the 
minor domains to the main core are the values in- 
creased. It is clear, therefore, that more global 
aspects of  the structure have to be taken into 
account. 

The mean of  the global rms differences between 
all pairs of  structures is a function which incor- 
porates global features but suffers from the same 
drawback as the superposition on a graphics 
display. Namely, a best fit of  the structures has to 
be performed with respect to all residues and, con- 
sequently, the result will be distorted when the 
variable regions of  the protein are large. An ob- 
vious way to solve this problem is provided by a 
modification in which the best fitting is done only 
with respect to the well-defined regions such that: 

nstruc I 

f ( i ) -  2~ RMS),(/) (1) 
g / p a i r  j<k  

where RMSj,(i) is the rms difference of  structures 
j and k at residue i: 

RMSj,(/) = 

1 ~ S [Xjl.,(i) - XZlm(i)l 2 Z/Z (2) 
/ = 1  m = l  

Fig.1. (a) Mean backbone local atomic rms difference for hirudin. The hirudin structures are from [8] and the values 
plotted represent best fit atomic rms differences for successive tripeptide segments along the chain as a function of the 
sequence number of the middle residue. (b) Mean global rms difference for hirudin. The triangles (zx) and solid line 
( ) represent the function f (eqn 2) before and after residues have been excluded, respectively. The solid circles (o) 
indicate the residues comprising the fixed region of hirudin. The overall mean global rms difference of the fixed region 
is 3.0 ,~,. (c) Weighted mean backbone distance variation g (eqn 3) in hirudin. Symbols as in b. The mean of g in the 
fixed region is 0.5 ,~. (d) Mean global rms difference in the polyalanine test case in which residues 1-19 and 22-40 
are helical and the conformation of residues 20-21 is varied in a totally random manner from structure to structure 
in a set of 10 structures. The solid line represents residues 22-40 (helix II) as the fixed region. The dashed line represents 
residues 1-19 as the fixed region. Other symbols as in b. The overall mean global rms difference in the fixed regions 

is 0.6 A. 
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and nst~uct is the number of calculated structures, 
F/pair is [nstruct(F/struct- 1)]/2, and N i  is the number 
of atoms included at residue i. The prime indicates 
that structure k has been best fitted to structure j 
with respect to the fixed residues only. 

An alternative function that can be used to iden- 
tify variable regions in a protein structure is based 
on distances between equivalent atoms in all 
residue pairs. Distances between atoms in the 
variable regions of  the structure and the fixed 
region also vary. A measure of this variation for a 
particular distance is its standard deviation. If only 
Co~ atoms are considered for simplicity, a standard 
deviation of  the Ca,-C~ distance for every residue 
pair is obtained giving an N x N  (where N is the 
number of  residues) symmetric matrix of Co~-Ccr 
distance standard deviations, similar to a Co~-Ccr 
distance plot. To get a single value for each residue 
i, the values over all other residues j in the fixed 
region are averaged (i.e. each row in the standard 
deviation matrix is averaged). Thus, the function is 

g(i)  = 1 ~ w i j S T D E V I D ( i , j ) ]  (3) 
F/fix jcF 

where D ( i , j )  is the distance between the Ca atoms 
in residue i and j ,  STDEV the usual standard 
deviation taken over the distances obtained from 
all calculated structures, F the set of residues com- 
prising the fixed region of  the protein, nfi× the 
number of residues in F, and wij a weighting factor 
used in the averaging. If more than just the Cce 
atoms are to be included, the arithmetic means of  
the standard deviations of the distances between 
equivalent atoms are simply taken in order to get 
a single value for each residue pair. 

In the case of both functions f and g reference 
is made to the residues comprising the fixed region 
of the protein, so that at first sight it would seem 
that one has to know a priori which residues com- 
prise the fixed region, F. This, however, is not the 
case as both functions can be calculated in an 
iterative manner. Initially all residues are taken to 
lie in the fixed region, the 'worst '  residues are then 
excluded, and f or g recalculated, until no further 
changes in the values of f or g occur and all ill- 
defined residues are excluded. The procedure is il- 
lustrated by the flow chart in fig.2, and the manner 
in which it is carried out is explained below for the 
function f and applies equally to the function g by 
analogy. 
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Fig.2. Flow chart diagram of the algorithm used to 
identify and delineate fixed and variable regions in a set 
of protein structures computed on the basis of 

interproton distance data. 

A residue i is considered to lie in F~, the fixed 
region of the structure, if the value of f~( i )  lies 
below m u  + u.or~, such that 

F ,  = { i l f~(i)  < m~ + u.or~ ] (4) 

where m~ and a~ are the self-consistently obtained 
limits 

nres 

m u  - 2J f u ( i ) . ~ ( m ~  + u . a u  - f~(l')) (5) 
Nu i=l 

Orl/ 

nres 

I [  S (1'~(i)) 2 .SCm,, + u-or,~ - f ~ ( i ) )  - m~/N~]/ 
i = 1  

(N~ - 1) 11/2 (6) 
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and 

tires 

N, ,  = 2~ a ( m u  + u .  o-,, - f u ( i ) )  (7) 
i = 1  

nrcs is the number  of  residues in the protein, 8(x) 
the Heaviside step function which is defined as 
8(x) = 1 for x > 0, 8(x) = 0 otherwise. That  is to 
say mu and ~ru are the mean and standard deviation 
of  f~ for all residues in F~. The best fitting 
necessary to calculate fu is performed with respect 
to the residues in Fu only. u is a positive and real 
scaling factor, which is initially set to a value for 
which only one or a few residues are excluded f rom 
the fixed region F~. 

For a given u, residues are excluded f rom the 
fixed part  until there are no further changes in f~, 
tr~ and mu. Thus a group of  residues is excluded 
generally for each value of  u. Generally, f~ changes 
every time a residue is excluded so that the 
criterion for excluding residues itself changes. An 
unambiguous decision on which residues to ex- 
clude can therefore only be made when a self- 
consistent limit of f~ ,  m~, and ~ has been reached. 
Then, the remaining fixed region F~ is checked if 
it is fixed enough; for example, if it has the desired 
mean global rms difference. In this case, the 
algorithm stops; otherwise u is reduced and the 
next limits o f f , , ,  o,, and mu are calculated. In this 
manner  it is possible to identify directly a region 
that has a required mean global rms difference. 

Once the main fixed region of  the structure has 
been determined the algorithm can then proceed to 
search the remaining residues (i.e. the variable 
regions) for further well-defined regions. Thus the 
method is able to decompose a given structure into 
several parts each of  which has a specified rms dif- 
ference. 

The algorithm has been tested with the struc- 
tures of  oevpurothionin [6], phoratoxin [7] and 
hirudin [8] determined on the basis o f  experimental 
interproton distance restraints as well as with the 
structures of  crambin derived on the basis of  
model interproton distance data [18], and it has 
been used to identify variable regions in the recent- 
ly determined solution structure of  the globular 
domain of  histone H5 [91. Both functions f and g 
(eqns 1 and 3) give similar results as illustrated by 
fig. lb  and c in the case of  hirudin. The function g, 
which is based on distances, has the advantage that 

no best fitting is necessary, a feature that speeds up 
the calculations. The rms difference, on the other 
hand, is the usual measure for comparing different 
structures, and computing times are still in the 
range of  a few minutes on a VAX 11/780, so it is 
preferable to work with the function f .  The best 
fitting is performed with the least-squares tech- 
nique of Kabsch [19]. 

In all cases, the algorithm detected the previous- 
ly determined variable regions. In the case of  
hirudin, the effect of  excluding ill-defined regions 
f rom the best fitting procedure to calculate the 
mean global rms difference can be seen in f ig. lb.  
The triangles represent f calculated with all 
residues included in the best fit, the solid line after 
residues had been excluded so that the overall 
mean global rms of  the remaining fixed region was 
below 3 A. The fixed region is indicated by closed 
circles on the solid line. Not  surprisingly, the 
'peaks '  of  f around residues 33 and 50, the tips of  
the finger of  antiparallel fl-sheet and of  the ex- 
posed loop, respectively, are increased, while f is 
reduced at the other residues. Thus, residues 31 
and 36, which belong to the finger of  antiparallel 
fl-sheet, and 48 and 52, which belong to the ex- 
posed loop, can be excluded f rom the fixed region. 
This would not have been possible on the basis of  
f calculated with all residues. For comparison,  
fig. lc shows the function g before and after exclu- 
sion of  the ill-defined residues. Here the weighting 
factor wij (cf. eqn 3) has been set to the average 
distance between residues i and j divided by the 
maximum average distance, in order to emphasize 
global features. 

The changes in the functions f and g resulting 
f rom the exclusion of  ill-defined residues are im- 
portant ,  but not very large in the case of  hirudin, 
as only comparatively few residues constitute the 
variable region of  the hirudin structure. This situa- 
tion is entirely different when the size of  the 
variable portion approaches that of  the fixed part.  
This is illustrated by the test case shown in fig.ld.  
A total of  10 polyalanine structures were 
generated, each containing two regular a-helices of  
equal length f rom residues 1 to 19 (helix I) and 22 
to 40 (helix II); the values for the backbone torsion 
angles were varied randomly within _+ 5 ° around 
the ideal values. The conformat ion of  residues 20 
and 21, however, was varied in a completely ran- 
dom manner f rom structure to structure. Thus, 
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there are two locally well-defined regions whose 
relative position (i.e. the angle between the two 
helices) is completely undefined. The triangles in 
f ig. ld show once again the mean global rms dif- 
ference before the exclusion of  any residues. Clear- 
ly, the mean global rms difference does not reveal 
anything of the true situation. Residues are then 
excluded f rom the fixed part,  starting with residue 
l, which has the highest value of the funct ionf .  As 
a result, helix II receives more weight in the best 
fitting than helix I. The values o f f  for all residues 
in helix I are therefore increased so that the next 
excluded residues also belong to helix I. Should a 
residue in helix II happen to be excluded in one 
iteration, it could reenter the fixed part  at any time 
later, as the cutoff  criterion (cf. eqn 4) is evaluated 
for all atoms in every iteration. In this manner,  all 
residues in helix 1 and residues 20 and 21 are ex- 
cluded, and helix II is identified as a well-defined 
region. The solid line in f ig. ld shows the resulting 
function f and the closed circles represent the in- 
cluded residues. The excluded residues 1-21 are 
then searched for another well defined region, and 
helix I is found (dashed line). 

It should be noted that if the situation had been 
exactly symmetric, it would not have been possible 
to identify the two well defined regions in this test 
case, as f would then also have been exactly sym- 
metric, and residues would have been excluded in 
pairs, one f rom helix I, and one f rom helix II. Ob- 
viously such a situation is unlikely to occur in 
reality. 

Finally, the iterative procedure presented here 
for identifying variable and fixed regions in a set of  
protein structures computed on the basis of  inter- 
proton distance restraints can also be used to com- 
pare structures of  two different proteins with the 
same number of  amino acids. A generalization of 
the algorithm would have to be able to handle the 
general case where deletions and insertions occur 
in the proteins being compared.  

A C K N O W L E D G E M E N T S  

This work was supported by the Max-Planck- 
Gesellschaft, grant no.321/4003/0318909A f rom 
the Bundesministerium f/Jr Forschung und 

Technologie and grant no.Cl186/1-1 from the 
Deutsche Forschungsgemeinschaft (G.M.C. and 
A.M.G.) .  

REFERENCES 

[1] Braun, W., Wider, G., Lee, K.H. and Wiithrich, 
K. (1983) J. Mol. Biol. 169, 921-948. 

[2] Williamson, M.P., Havel, T.F. and Wiithrich, K. 
(1985) J. Mol. Biol. 182, 295-315. 

[3] Kline, A.D., Braun, W. and Wi)thrich, K. (1986) J. 
Mol. Biol. 189, 377-382. 

[4] Braun, W., Wagner, G., W6rg6tter, E., Vassak, 
M., Kagi, J.H.R. and Wiithrich, K. (1986) J. Mol. 
Biol. 187, 125-129. 

[5] Kaptein, R., Zuiderweg, E.R.P., Scheek, R.M., 
Boelens, R. and Van Gunsteren, W.F. (1985) J. 
Mol. Biol. 182, 179-182. 

[6] Clore, G.M., Nilges, M., Sukumaran, D.K., 
Br~inger, A.T., Karplus, M. and Gronenborn, 
A.M. (1986) EMBO J. 5, 2729-2735. 

[7] Clore, G.M., Sukumaran, D.K., Nilges, M. and 
Gronenborn, A.M. (1987) Biochemistry 26, 
1732-1745. 

[8] Clore, G.M., Sukumaran, D.K., Nilges, M., 
Zarbock, J. and Gronenborn, A.M. (1987) EMBO 
J. 6, 529-537. 

[9] Clore, G.M., Gronenborn, A.M., Nilges, M., 
Sukumaran, D.K. and Zarbock, J. (1987) EMBO 
J., in press. 

[10] Wiithrich, K., Wider, G., Wagner, G. and Braun, 
W. (1982) J. Mol. Biol. 155, 311-319. 

[11] Crippen, G.M. and Havel, T.F. (1978) Acta 
Crystallogr. A34, 282-284. 

[12] Havel, T.F., Kuntz, I.D, and Crippen, G.M. (1983) 
Bull. Math. Biol. 45, 665-720. 

[13] Havel, T.F. and Wiithrich, K. (1984) Bull. Math. 
Biol. 46, 673-698. 

[14] Havel, T.F. and Wiithrich, K. (1985) J. Mol. Biol. 
182, 281-294. 

[15] Braun, W. and Go, N. 0985) J. Mol. Biol. 186, 
611-626. 

[16] Clore, G.M., Gronenborn, A.M., Brfinger, A.T. 
and Clore, G.M. (1985) J. Mol. Biol. 185,435-455. 

[17] Brfinger, A.T., Clore, G.M., Gronenborn, A.M. 
and Karplus, M. (1986) Proc. Natl. Acad. Sci. USA 
83, 3801-3805. 

[18] Clore, G.M., Briinger, A.T., Karplus, M. and 
Gronenborn, A.M. (1986) J. Mol. Biol. 191, 
523-551. 

[19] Kabsch, W. (1976) Acta Crystallogr. A32, 
922-923. 

16 


